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We study interactions between localized scatterers on metallic carbon nanotubes by a mapping onto a
one-dimensional Casimir problem. Backscattering of electrons between localized scattering potentials mediates
long-range forces between them. We model spatially localized scatterers by local and nonlocal potentials and
treat simultaneously the effects of intravalley and intervalley backscattering. We find that the long-range forces
between scatterers exhibit the universal power-law decay of the Casimir force in one dimension, with prefac-
tors that control the sign and strength of the interaction. These prefactors are nonuniversal and depend on the
symmetry and degree of localization of the scattering potentials. We find that local potentials inevitably lead to
a coupled valley scattering problem, though by contrast nonlocal potentials lead to two decoupled single-valley
problems in a physically realized regime. The Casimir effect due to two-valley scattering potentials is charac-
terized by the appearance of spatially periodic modulations of the force.
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I. INTRODUCTION

A single-walled carbon nanotube is a two-dimensional
graphene sheet rolled into a cylinder. The diameter of the
nanotube is on the order of a few nanometers, and its length
can vary from hundreds of nanometers to centimeters. Due to
the small tube radius, electrons are confined in the azimuthal
direction, and at sufficiently low energy the quantum con-
finement leads to an effectively one-dimensional electronic
system. These nanotubes can be either metallic or semicon-
ducting, and the low-energy electronic band structure can be
studied using a long-wavelength expansion of the Hamil-
tonian around each of the degenerate Fermi points, labeled
by K and K� points. This long-wavelength theory is given by
a pair of one-dimensional Dirac Hamiltonians.

When a nanotube is chemically functionalized or contains
defects on the tube wall, localized scattering centers interrupt
the free motion of its low-energy charge carriers. Generally a
localized defect can backscatter a propagating low-energy
electron, either by large momentum scattering between the K
and K� valleys or by small momentum backscattering from
forward to backward moving excitations within a single val-
ley. Superposition of right and left-moving excitations pro-
duces various standing-wave patterns in the electron density
near such a defect.

In this paper we consider forces on the scatterers pro-
duced by their interaction. It is easy to see that for an isolated
scatterer, the backscattering-induced forces on the left and
right-hand side of the defect must exactly cancel, so there is
no net force. However, for pairs of defects and generally for
a distribution of defects at finite density, the forces on the left
and right-hand sides of the scatterer do not balance and me-
diate a net force on each scatterer. In previous work we ex-
plored this effect within a single-valley model for the nano-
tube and found that the scattering induced forces could be
mapped to a Casimir-type problem, where the propagating
electron waves provide the role of the background quantum
field. Importantly, the spinor character of these background
fermions admits the possibility of attractive, repulsive or
compensated null forces on the scatterers depending on the

internal symmetry of their scattering potentials.1

In this work we generalize these earlier results to study
the combined effects of intravalley and intervalley back-
scattering. This extension proves to be crucial for a meaning-
ful application to the nanotube problem. Potentials that pro-
duce only intravalley scattering need to vary slowly on the
scale of a lattice spacing. Yet, any local potential with this
property degenerates to a one-dimensional scalar potential
that cannot backscatter a massless Dirac particle. Thus, for a
local potential our effect ultimately requires a significant de-
gree of spatial localization, and in this regime intervalley
backscattering ultimately arises. Indeed, we find below that
for local potentials there is no regime in which the force
problem can be regarded as confined to a single valley, ne-
cessitating a coupled valley formulation of the scattering
problem.

By contrast, nonlocal scattering potentials do allow the
possibility of only intravalley backscattering in a controlled
physically realizable limit. This situation is realized most
naturally for electrons coupled to slowly varying lattice
strains on a nanotube. In this paper we present a generaliza-
tion of the formalism described in Ref. 1 suitable for appli-
cation to the coupled two-valley problem, and explore the
forces that occur as a function of range and internal symme-
try of the scattering potentials. We provide formulas that de-
scribe the electron mediated forces in these various geom-
etries. Table I provides a compact summary of our results.

The magnitude and sign of the interaction is dictated by
the internal structure of the scatterers. Local potentials can
describe atomically sharp impurities localized on a sublattice
site. We find a repulsive force between local impurities re-
siding on equivalent sublattice sites and an attractive force
between scatterers on distinct sites. Related results were re-
cently shown for interactions between impurities in two-
dimensional graphene.2 We also explore interactions between
impurities where only intervalley scattering is present. Inter-
actions between defects due to large momentum backscatter-
ing were previously discussed in one-dimensional Fermi
liquids.3,4 For nonlocal potentials we show that scattering
persists for ranges that are larger than the lattice constant
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leading to the single-valley scattering problem. The results
we obtain for Casimir forces between nonlocal scatterers
agree with our previous work. We recover the universal dis-
tance dependent power-law decay for the Casimir force in
one dimension. However, for local potentials, unlike for the
single-valley problem, we also observe periodic spatial
modulations in the force due to intervalley scattering.

The paper is organized in the following manner. In Sec. II
we define the geometry and derive the low-energy electronic
structure of single-walled carbon nanotubes. In Sec. III we
present scattering potentials which can describe impurities in
nanotubes. The distinction between relevant length scales is
discussed in Sec. III A In Sec. III B and Sec. III C we discuss
local and nonlocal potentials, respectively. In Sec. IV we
outline the basic mechanism used to calculate Casimir
forces. In Sec. IV A we review our previous work of the
one-valley problem, and show how the method is generalized
to the two-valley problem in Sec. IV B. Our main results are
presented in Sec. V. Casimir forces between local and non-
local potentials are shown in Sec. V A and Sec. V A, respec-
tively. In Sec. VI we discuss the relation of our findings to
physical adsorbates on nanotubes. The paper is concluded in
Sec. VII.

II. SINGLE-WALLED CARBON NANOTUBES

A. Nanotube geometry

In this section we describe the geometric structure of a
carbon nanotube and introduce the notation used in this pa-
per. Two-dimensional graphene is a honeycomb lattice with
two inequivalent sublattice sites, labeled A and B, as illus-
trated in Fig. 1. There is one carbon atom residing on each
lattice site. The primitive lattice vectors are a1=a�1,�3� /2
and a1=a�−1,�3� /2, where a /�3�1.4 Å is the nearest-
neighbor bond length. The vectors �’s define a triad of
nearest-neighbor bond vectors as shown in Fig. 1.

A carbon nanotube is formed by wrapping the graphene
sheet into a cylinder, such that two equivalent lattice sites are
identified. The circumferential vector C=na1+ma2, where

n ,m�Z, characterizes the nanotube. The xy-plane defines
the lattice coordinate system, where bonds run parallel to the
y-axis. The tube coordinate system is defined by x� along the
tube axis and x� around the circumference. The two coordi-
nate systems are related by the tube’s chiral angle defined as
the angle between x and x� as shown in Fig. 1. The coordi-
nate transformation is given by

� x̂�

x̂�

� = � cos � sin �

− sin � cos �
��x̂

ŷ
� . �1�

The circumference vectors of high-symmetry achiral nano-
tubes that have a plane of mirror symmetry are shown in Fig.
1. In armchair ��=0� and zigzag ��=� /6� carbon nanotubes
bonds run parallel to the tube’s circumference and axis, re-
spectively.

Fixing the origin on an A site, the lattice translation vector
RA=n1a1+n2a2, where n1 ,n2�Z, locates an A sublattice site,
and the vector RB=RA+�o locates a B site, where �o is a
vector connecting the two sublattice sites. The lattice vectors
in the nanotube coordinate system are given by

Ri =
a

2
�cos ��n1 − n2� + �3 sin ��n1 + n2 +

2b

3
�	x̂�

+
a

2
�− sin ��n1 − n2� + �3 cos ��n1 + n2 +

2b

3
�	x̂�,

�2�

where b=0 for i=A and b=1 for i=B. The nearest-neighbor
bond vectors � j’s shown in Fig. 1 in the tube coordinate
system are given by

� j =
a
�3

�sin � jx̂� + cos � jx̂�� , �3�

where � j =�−2�j /3, and j= 
0,�1�.
The first Brillouin zone of the honeycomb lattice is shown

in Fig. 2. In graphene the conduction and valence bands
touch at the six corner points of the Brillouin zone. There-
fore, for undoped graphene the Fermi surface lies at the K
and K� points. The three equivalent Fermi points identified
by white and black circles in Fig. 2 are related by reciprocal-
lattice vectors G=m1b1+m2b2. However, K and K� points
are inequivalent since they cannot be connected through a
reciprocal-lattice vector. In the nanotube coordinate system
the six corners of the Brillouin zone are given by

�Kp = �
4�

3a
�cos �px̂� − sin �px̂�� , �4�

where �=+1�−1� for K�K��-points, and p= 
0,�1�. As
shown in Fig. 2, the corner point Ko is a reference defining
the chiral angle � between the lattice x-axis and the tube axis.

B. Low-energy theory

The energy-band structure of graphene can be obtained
using a tight-binding model for � electrons. Considering
nearest-neighbor hopping between sites on a two-
dimensional honeycomb lattice, the tight-binding Hamil-
tonian for graphene is given by

: A

: B

aa 12

(n,n) armchair(n,0) zigzag

C=n a+m a

x

x

x

y

θ

1 2

τ

τ τ1

0

1

FIG. 1. �Color online� Two-dimensional honeycomb lattice with
A and B sublattice sites identified. The primitive unit vectors are a1

and a2, and ��s define a triad of nearest-neighbor bond vectors. A
nanotube is characterized by a vector C=na1+ma2 that point along
the tube circumference. The chiral angle � is the angle between the
lattice coordinate x and the tube axis x�. The circumference vectors
of high-symmetry achiral armchair �n ,n� and zigzag �n ,0� nano-
tubes are shown.
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Ho = − t �
RA,j

a†�RA�b�RA + � j� + H.c., �5�

where t is the nearest-neighbor hopping energy, and a†�b†�
creates an electron on the A�B� sublattice. The low-energy
electronic properties are found by expanding the tight-
binding Hamiltonian around the two distinct K�K��-points to
linear order in momentum k. Since the Fermi points are in-
versely proportional to the lattice constant K�1 /a, the
long-wavelength theory is valid for ka	1.

The energy spectrum of a carbon nanotube is obtained
from the graphene Hamiltonian by rotating to the tube coor-
dinate system and quantizing the crystal momentum along
the transverse direction. Single-walled carbon nanotubes are
either metallic or semiconducting depending on whether the
discrete lines of crystal momentum pass through the Fermi
points K and K�. It turns out that 1/3 of all nanotubes are
metallic, since mod�n−m ,3�=0 is a necessary condition for
the six corners of the Brillouin zone to be allowed wave
vectors.

In our notation, the 2
2 identity and Pauli matrices

I� ,�i� span A�B�-sublattice pseudospin space, and 
I� ,�i�
span the K�K��-point valley isospin space, where i= 
x ,y ,z�.
For simplicity, we introduce an operator which defines a ro-
tation by an angle � around n̂ in either � or � space. For
example, in � space this operator is given by

O��n̂�,�� � ein̂·��/2Oe−in̂·��/2. �6�

It is convenient to define a projection operator P�
�

= �I���z� /2 which projects on a sublattice site. Likewise,
P�
�= �I���z� /2 is a projection operator in the valley space.

In this paper, we only consider the lowest energy band of
metallic tubes �gapless systems� as will be explained in Sec.
III. Expanding Ho around the Brillouin-zone corners and ro-
tating to the tube coordinate system using Eq. �1�, the long-
wavelength Hamiltonian for the lowest energy band of a me-
tallic nanotube becomes

�− ivF�P�
+

� �x��ẑ�,− �p� − P�
−

� �x��ẑ�,�p����x�
− E�fk�x�� = 0,

�7�

where vF=�3at /2�0.54 eV·nm. The basis states are four-
component spinors defining relative amplitudes at the A and
B sites and the K and K� Fermi points in the following order
�AKp ,BKp ,AKp�

� ,BKp�
� �, where p and p� correspond to one of

the three equivalent K and K� points, respectively, depicted
in Fig. 2. The eigenstates of Ho, f�k

�p �x��=��k
�p e�ikx� /�2� are

right and left-moving plane waves multiplied by a spinor,
where k is the momentum along the tube axis. When the
chemical potential is fixed at �=0 the filled Dirac sea has
E=−k, and the right and left-moving spinors are given by

��k
p =

1
�2�

1

�ei�p

0

0
�, ��k

−p� =
1
�2�

0

0

1

�e−i�p�
� . �8�

C. Basis states

The eigenstates of the long-wavelength Hamiltonian in
Eq. �7� are isotropic and do not depend on the crystal orien-
tation of a nanotube. To include lattice anisotropic potentials
in the theory, we reconstruct the Bloch functions from the
solutions in Eq. �7� for the effective-mass theory. In the k ·p
approximation the electron wave function near the Fermi en-
ergy is given by a Bloch function at the K point multiplied
by an envelope function. For graphene, the wave function is

��K + k,r� = �
i=A,B

eik·r�i,K�r��i,k, �9�

where �i,K�r�’s are exact Bloch functions at the K point, and
eik·r�i,k’s are slowly varying envelope functions.5 Bloch
states are plane waves multiplying a cell periodic function.
Potentials which resolve the lattice structure couple to the
lattice periodic component of the Bloch states. Taking the
Fourier transform of the periodic part of the Bloch function,
the sublattice basis functions at any of the six corner points
�Kp’s are given by

�i
�p�r� = ei�Kp·rui�r� = ei�Kp·r�

n

F��Kp + Gn�eiGn·�r−�i�,

�10�

where F�q� is the Fourier transform of a localized orbital
function, G’s are reciprocal-lattice vectors, and � defined in
Eq. �4� labels the K and K� points. The subscript i labels a
sublattice site, such that �A=0 and �B=�o. The functions in
Eq. �10� are rapidly oscillating and describe modulations on
the scale of the atomic spacing. Since F�q� decreases rapidly
with momentum, in the lowest “star” approximation6 we
keep terms in the sum of Gn’s which connect the three
K�K�� Brillouin-zone corners, such that K+G= K. This
approximation is appropriate for the range of the scattering
potentials we study in this paper. The normalized basis func-
tions at the A and B sites in the lowest “star” representation
are given by

x

x
K

K'
K'

K'

K

K

0

0

1

1

-1

-1

θ

b

b

1

2

x

FIG. 2. �Color online� The first Brillouin zone of the honeycomb
lattice depicted relative to the tube coordinate system, where x�

points along the tube axis. The six corners of the Brillouin zone are
shown. The three equivalent K �black circles� and K� �white circles�
points are related by reciprocal-lattice vectors G=m1b1+m2b2. The
chiral angle � is defined as the angle between the tube axis and K0

in the lattice coordinate system.
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�A
�p�r� =

1
�3

�
m=0,�1

ei�Km·r,

�B
�p�r� =

1
�3

z�p �
m=0,�1

ei�Km·rz−�m, �11�

where z=exp�i2� /3�. Evaluating the matrix element of a
tight-binding potential in the lowest “star” basis given in Eq.
�11� and expanding to linear order in k, one obtains the low-
energy Hamiltonian given in Eq. �7� for the lowest band of a
metallic nanotube.

III. SCATTERING POTENTIAL

In this paper, we study Casimir interactions between two
scatterers mediated by the conduction electrons of a carbon
nanotube. In this section we describe the structure of the
scattering potentials used to study this problem. We explore
the dependence of the Casimir interaction on the symmetry,
range, strength, and orientation of the two potentials. We
discuss two types of potentials, local and nonlocal, which
result in different scattering processes.

A. Potential range

In our previous work we studied the one-valley scattering
problem valid for potentials whose range is larger than the
lattice constant, where intervalley scattering does not play a
role. The 2
2 matrix structure of such a potential is de-
scribed by its pseudospin polarization.1 When the range of
the potential is on the order of interatomic spacing, the two
valleys are no longer decoupled.7 In this paper, we build
upon our previous work to incorporate the effects of sharper
potentials resulting in a two-valley scattering problem. When
the two valleys are coupled, the potential is described by a
4
4 matrix and is characterized by both pseudospin and
valley polarizations.

In general, the spatial variation W of the scattering poten-
tial relevant for Casimir interactions is shorter than the con-
duction wavelength of the envelope function �, such that
Wk	1. Figure 3 shows an illustration of a scattering pro-
cess. Freely propagating electrons in regions I and III have a
wavelength ��1 /k, and the scattering region II has a width
W. A potential can be described by delta function as long as
W	�. The important distinction between the one- and two-
valley scattering problems described by the spinor structure
of the Hamiltonian is relevant for potentials whose range is

longer and shorter, respectively, than the interatomic separa-
tion.

We study interactions between scatterers in metallic nano-
tubes. Since Casimir interactions mediated by massive fields
are exponentially suppressed at long distances,8 in this paper
we do not address semiconducting nanotubes or scattering
between bands which do not pass through the Fermi energy.
The momentum transfer in the azimuthal direction between
various Fermi points is determined by the matrix structure of

the scattering potential V̂. The free degree of freedom is the
longitudinal momentum, and the scattering process is truly
one dimensional along the tube axis. We model a delta-
function scatterer by a one-dimensional square-barrier poten-
tial of the form

V̂�x�� = V̂��x� − x1���x2 − x�� , �12�

where V̂ describes the internal structure of the potential, and
W= �x2−x1�	� is the barrier width.1

In the rest of the paper, long-range potentials imply a
range d longer than the lattice constant but shorter than the
envelope function wavelength a�d	�. Short-range poten-
tials refer to atomically sharp scatterers whose range is com-
parable to or smaller than the lattice constant d�a.

B. Local potentials

A local potential can be represented as

V�r,r�� = V�r���r − r�� . �13�

We are interested in the matrix structure of the scattering
potential as a function of its range and position on the lattice.
For example, if we consider Gaussian model potential V�r�
=Ve−r−ro/d2

, then on a surface of a cylinder V�r� is given by

V�x�,x�� = V exp�−
�x� − x�

o�2

d2 −
4R2

d2 sin2� x� − x�
o

2R
�� ,

�14�

where V is the potential strength, ro= �x�
o ,x�

o � is the center of
the Gaussian on the nanotube surface, R is the radius of the
tube, and d controls the range of the potential.

The matrix elements are calculated in the lowest “star”
basis defined in Sec. II C. For example, the intravalley ma-
trix expectation value VAA of the potential given in Eq. �13�
evaluated in the lowest “star” basis defined in Eq. �11� is
given by

��A
p�r�V�r��A

p�r�� =
1

3 �
m,m�

� d2re−i�Km−Km��·rV�r�

=
1

3 �
m,m�

V�Km − Km�� , �15�

where V�q� is the Fourier transform of the potential. The
Fourier transform of the Gaussian potential in Eq. �14� is
normalized such that V�q�→1 as 
q� ,q��→0. Therefore,
V�q� ,q�� is given by

x

I II III
W

λ

FIG. 3. �Color online� An illustration of a scattering process. I
and III define regions of free propagation along the tube axis. The
shaded scattering region has a width W. A scattering potential can
be represented by a delta function when W is much smaller than �,
the wavelength of the envelope function.
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V�q�,q�� = V�Iq�R�2R2

d2 �/Io�2R2

d2 �	e−q�
2d2/4e−iq·ro, �16�

where In�x� is a modified Bessel function of the first kind. In
the large radius limit, the Fourier transform of the Gaussian
potential approaches the limit of a potential on a two-
dimensional flat sheet and becomes isotropic. In the R�a
limit Eq. �16� is given by

V�q� = Ve−q2d2/4e−iq·ro. �17�

We define the center of the Gaussian by ro=RA
o +���, where

0���1, such that the potential is centered on either the A
sublattice, the B sublattice, or along any of the three bonds
defined by the triad of bond vectors �� pointing away from
rA

o . The total impurity Hamiltonian is given by

H1 = H1
a + H1

e , �18�

where H1
a and H1

e are 4
4 matrices containing intravalley
and intervalley matrix elements, respectively.

Initially, we focus on the intravalley part of the potential.
Evaluating both the diagonal and off-diagonal matrix ele-
ments Vij’s of a local potential, the intravalley part of the H1
becomes

H1
a = I� � �VAP�

+ + VBP�
−� + VAB�P�

−
� �x��ẑ�,

2��� − p��
3

�
+ P�

+
� �x��ẑ�,

2��p − ��
3

�	 . �19�

The component of the potential that points along the elec-
tron’s propagation direction does not backscatter since it
simply shifts the longitudinal momentum and can be re-
moved by a gauge transformation.9 Applying the gauge
transformation, we find that the component of the off-
diagonal matrix elements which contributes backscattering is
proportional to VAB sin ��, where � labels the bond where the
center of the potential is positioned. When the potential is
centered in the middle of the bond VA=VB, and the diagonal
matrix elements result in a scalar potential represented by an
identity matrix. There is no backscattering by a scalar poten-
tial in metallic nanotubes due to Berry’s phase of the wave
function under a spin rotation.10 The off-diagonal intravalley
matrix elements vanish when a bond-centered impurity is on
a bond that is parallel to the tube circumference �sin ��=0�.
For example, in Fig. 1 the circumferential vector C labeling
an armchair �n ,n� tube runs parallel to the bonds labeled by
a vector �o. Therefore, if the center of the Gaussian is posi-
tioned in the middle of any �o bond, there will be no intra-
valley backscattering by this local impurity for an armchair
tube as labeled in Fig. 1.

Bonds are parallel to the circumference only in armchair
nanotubes, and a mirror reflection about the axis is accom-
panied by an exchange of an A and B sublattice. Therefore, a
mirror reflection across the nanotube axis for armchair tubes
commutes with the Hamiltonian. If a potential commutes
with the Hamiltonian, left and right-moving states will not
mix, and there will be no backscattering. Therefore, pertur-

bations that are symmetric with respect to mirror reflection
about the tube axis have zero intravalley backscattering
amplitudes.11,12

In the large radius R�a limit when the Gaussian potential
becomes isotropic as shown in Eq. �17�, the coefficients in
Eq. �19� within the lowest “star” approximation are given by

VA = V�1 +
2

3
e−Qo

2d2/4�2 cos�2��

3
� + cos�4��

3
�	�

VB = V�1 +
2

3
e−Qo

2d2/4�2 cos�2��� − 1�
3

�
+ cos�2��2� + 1�

3
�	� ,

VAB =
2V

3
e−Qo

2d2/4�cos���2� − 1�
3

� + cos�2��2� − 1�
3

�� ,

�20�

where

Qo = Kp − Kp� =
4��3

3a
, p � p� �21�

is the momentum transfer between equivalent Fermi points
depicted in Fig. 2 in the lowest “star” approximation.

For short-range potentials, the matrix structure of the scat-
tering potential is a function of the center of the Gaussian
potential �. A plot of the amplitudes in Eq. �20� as a function
of potential center � for d /a�0 is shown in Fig. 4. The
dashed, dotted, and solid curves represent VA, VB, and VAB,
respectively. When the Gaussian potential is centered on the
A sublattice ��=0�, there is no amplitude on the B sublattice
�VB=0� and vice versa. The off-diagonal amplitude VAB is
zero for both A��=0� and B��=1� sublattice centered poten-
tials and is maximum when the potential is bond centered
��=1 /2�. When the potential is centered in the middle of the
bond the three amplitude are equal VA=VB=VAB. For long-
ranged d /a�1 potentials, the lattice structure resolution is

3

0.5

1

2

1.5

2.5

0 10.2 0.4 0.6 0.8

VA VB

VAB

ν

V(ν)
V

FIG. 4. Potential amplitudes VA, VB and VAB defined in Eq. �20�
represented by dashed, dotted and solid curves, respectively, for
zero potential range d /a�0 as a function of �. The parameter �
determines the center of the Gaussian potential along a bond con-
necting two neighboring sublattice sites: �=0 indicates a potential
that is A-sublattice centered, �=1 yields in a B-sublattice centered
potential, and �=1 /2 corresponds to a bond-centered potential.
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smeared, and H1
a becomes a scalar potential which does not

backscatter massless fermions.
The intervalley matrix elements that describe scattering

between inequivalent K and K� points are given by

H1
e = VA��x��ẑ�,�A� � P�

+ + VB��x��ẑ�,�B� � P�
−

+
VAB�

2
�+ � ��−�ẑ�,− �AB

p � + �+�ẑ�,�AB
p� �� , �22�

where the phases are �A=K ·RA
o , �B=K ·RA

o −2� /3�p+ p�
+��, �AB

p =K ·RA
o −2� /3�p−��, and K ·RA

o =2� /3�no−mo�.
The intervalley scattering coefficients VA� , VB� , and VAB� in the
large radius limit and the lowest “star” approximation are
given by

VA� =
V

3
�2e−Q1

2d2/4�1 + 2 cos�2��

3
�	

+ e−Q2
2d2/4�1 + 2 cos�4��

3
�	� ,

VB� =
V

3
�2e−Q1

2d2/4�1 + 2 cos�2��� − 1�
3

�	
+ e−Q2

2d2/4�1 + 2 cos�2��2� + 1�
3

�	� ,

VAB� =
V

3
�e−Q1

2d2/4�− 1 + 2 cos���2� − 1�
3

�	
+ e−Q2

2d2/4�1 + 2 cos�2��2� − 1�
3

�	� . �23�

Within the lowest “star” there are two magnitudes of mo-
mentum transfer between distinct Fermi points which are
given by

Q1 = 2Kp =
8�

3a
,

Q2 = Kp + Kp� =
4�

3a
, p � p�. �24�

Intervalley amplitudes are equal to their corresponding intra-
valley amplitudes for atomically sharp potentials when d /a
�0.

The intervalley amplitudes approach zero for long-range
potentials d /a�1, unlike the diagonal intravalley terms in
Eq. �20� which approach a constant. Intravalley and interval-
ley amplitudes given in Eqs. �20� and �23�, respectively, are
plotted as a function of potential range d /a in Fig. 5. The
curves labeled VA, VB, and VA� are amplitudes of a
A-sublattice centered ��=0� potential. Due to threefold rota-
tional symmetry of the lattice VB� =0 for a A-sublattice cen-
tered potential. When d /a�0 the amplitudes for intravalley
and intervalley scattering become equal VA=VA� =3V, and
VB=0. The vice versa is true for a B-sublattice centered
��=1� scatterer. Off-diagonal intravalley and intervalley am-
plitudes VAB and VAB� vanish for a sublattice centered poten-
tial. The remaining two curves are plots of off-diagonal am-

plitudes due to a potential centered in the middle of a bond
��=1 /2�. In general, the intervalley amplitudes decays
slower than the intravalley ones since Q1�Qo. When the
potential is anisotropic for R�a, the relative magnitude of
the intervalley and intravalley amplitudes is a function of the
tube’s chiral angle.

To summarize, for a Gaussian model potential intervalley
scattering amplitudes decay as a function of d /a for all val-
ues of � and are negligible for a long-range potential. The
intravalley components of a local potential Hamiltonian also
do not contribute to scattering when the potential is long-
ranged. When the range of the potential is on the order of
interatomic spacing d /a�1, the potential in Eq. �18� be-
comes a scalar and is described by an identity matrix I�
� I�, which produces no scattering for massless Dirac
fermions.10 This holds for all values of �, since the position
of the potential is irrelevant when the potential is slowly
varying on the scale of the lattice. Therefore, only atomically
sharp local potentials produce backscattering, a regime
where both intra- and intervalley scattering play a role. Note,
within our model one cannot realize a local potential where
only intravalley scattering is present. Therefore, a local po-
tential inevitably results in a two-valley problem.

C. Nonlocal potentials

In this section we present an example of a one-body non-
local potential and show that it backscatters even when the
potential is long-ranged. We model a nonlocal potential by

V�r,r�� = V� r + r�

2
��g�r − r����r − r� − � j�

+ g�r� − r���r − r� + � j�� . �25�

The prefactor V�r� depends on the average r= �r+r�� /2 of
the spatial coordinates, and the remaining terms depend of
the difference of r and r�. The �-functions restrict the length
scale of g�� j� to the nearest neighbors. The quantity g�� j� can
describe, for example, local modulation of the hopping inte-

3

0.5

1

2

1.5

2.5

0 10.2 0.4 0.6 0.8

VA

VA
'

VBVAB
'

VAB d/a

V(d/a)

V

FIG. 5. Intravalley and intervalley amplitudes given Eq. �20�
and Eq. �23�, respectively, due to a local Gaussian potential as a
function of range d /a for various values of potential center �. The
plots labeled VA, VB, and VA� are due to a A-sublattice centered
potential ��=0�. In this case, VB� , VAB, and VAB� are zero. For d /a
�1, VA=VB�V and VA� →0. The remaining curves labeled VAB and
VAB� are off-diagonal amplitudes due to a bond-centered potential
��=1 /2�, which decay to zero for a long-range potential.
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gral between neighboring sites. This term depends on the
orientation of the j bond in a nanotube.

Calculating the off-diagonal intravalley matrix element
VAB in the lowest “star” we find

��A
p�r�V�r��B

p�r�� =
2zp

3 �
m,m�

V�Km� − Km�z−m


�
j

g�� j�cos� �Km + Km�� · � j

2
	 .

�26�

In order to obtain the dependence of the potential on the
orientation of the lattice with respect to the tube axis, we
study the first three terms in the gradient expansion of g�� j�
given by

g�� j� � go + � j · g1 +
1

2
� j · g2I · � j , �27�

where go is a scalar, g1 is a vector, and g2I is a tensor of rank
two. We include deviations of the hopping amplitude to ze-
roth order in the momentum expansion around the Brillouin-
zone corners. We fix the defect potential in the plane of a
tube’s coordinate system and obtain the dependence of the
perturbation potential on the tube’s chiral angle �.

The off-diagonal intravalley matrix elements for a nonlo-
cal potential have terms that are nonvanishing for zero-
momentum transfer. We evaluate the m=m� component of
the sum in Eq. �26� for the first three terms in the gradient
expansion of g�� j� shown in Eq. �27�. The zeroth-order sca-
lar go term, the average of the hopping amplitudes, has no
off-diagonal contribution at the Brillouin-zone corners. The
first-order term proportional to g1 is a vector potential that
shifts the electronic spectrum around a Fermi point. Vector
potentials that couple to the longitudinal momentum have no
effect on any physical properties and can be eliminated by a
simple gauge transformation. Therefore, only the component
of the vector potential that shift the momentum in the azi-
muthal direction can scatter incoming states. The second-
order term in the expansion couples to g2I, a tensor of rank
two. These potentials describe deformations such at strains,
twists, and curvature. Some examples of such perturbations
can be found in.13,14

Including the first three terms in the gradient expansion,
the dimensionless sum over g�� j� that enters the m=m� term
of Eq. �26� is given by

�
j

g�� j�z−j �
a�3

2
e−i��g� + ig� +

a

4�3
ei3���G�� − G���

− i�G�� + G����	 � g̃e−i�, �28�

where we have used exp�iKm ·� j�=zm−j, and �mz�m=0. The
components of the two-dimensional vector potential g1 along
the tube axis and circumference are defined by g� and g�,
respectively, and have dimensions of inverse length. The
vector potential does not depend on the chiral angle as seen
in Eq. �28�. The components of the rank two tensor g2I are

defined by Gij with dimensions of inverse length squared.
For example, the diagonal components G�� and G�� can re-
sult from uniaxial strains along the axial and circumferential
directions, respectively. The off-diagonal components G��

and G�� can represent strains such as local twists.13,14 The
tensor potential preserves the symmetry of the honeycomb
lattice since it is invariant under the transformation of the
chiral angle � by 2� /3, which is apparent in the 3� depen-
dence in Eq. �28�.

Gauging away the component of the potential that couples
to the longitudinal momentum, the nonlocal defect potential
due to zero-momentum transfer is given by

H2 = V Im�g̃��P�
−

� �y��ẑ�,�p�� − P�
+

� �y��ẑ�,− �p�� .

�29�

When V�r� is modeled by a Gaussian potential, all
other matrix elements of a nonlocal potential decay
�exp�−Qi

2d2 /4� where Qi’s are defined in Eqs. �21� and �24�.
Therefore, these matrix elements are parametrically smaller
than the ones described in Eq. �29� for nonzero d /a and will
not be considered further.

The perturbation Hamiltonian due to a nonlocal potential
given in Eq. �29� is independent of the impurity position �
and preserves the rotational symmetry of the lattice. The po-
tential is nonzero for potential ranges that exceed the scale of
the lattice. The range of this potential is only limited by the
envelope square barrier defined in Sec. III A. Therefore, for a
nonlocal potential only intravalley scattering contributes for
finite range potentials, and the problem is single valley.

IV. FORCE CALCULATION AND SCATTERING
MECHANISM

In our previous work we developed a framework for
studying Casimir forces between potentials relevant for the
one-valley scattering in metallic carbon nanotube.1 In this
paper we discuss potentials where both intra- and intervalley
scattering are present. In this section we review the one-
valley force calculation, and then generalize the method to
the two-valley scattering problem.

A. One-valley problem

In Ref. 1 we employ the force operator approach to cal-
culate Casimir forces between one-valley scattering poten-
tials mediated by one-dimensional massless Dirac fermions.

The total Hamiltonian Ĥ for the one-valley problem is given
by

Ĥ = − ivFP�
+

� �x��ẑ�,− �p��x + V�x� . �30�

The first term in Eq. �30� is the 2
2 low-energy Hamil-
tonian expanded around the Kp point, obtained by decou-
pling the two valleys in Eq. �7�. The internal structure of the
scattering potential is dictated by its spinor polarization. We
study potentials with sharp walls and calculate a force as the
walls becomes impenetrable. We model a delta-function po-
tential by a square barrier and study limits of zero width and
infinite potential strength. The potential V�x� is given by
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V�x� = Vei�x�/2�ze
−i�x�/2��x − x1���x2 − x� , �31�

where � is the spinor polarization of the potential, and ��x�
is a step function.

The force operator is given by

F̂ = −
�Ĥ
� x̄

, �32�

where x̄ is a position. Using the Hellmann-Feynman theorem
the total force is the ground-state expectation value of the
force operator summed over all occupied states. The force
exerted on one barrier with sharp walls is given by

F = − �
0

�

dk����x̄ + W/2�V̂��x̄ + W/2��

− ���x̄ − W/2�V̂��x̄ − W/2��� , �33�

where x̄= �x1+x2� /2 is the center of the barrier, and W=x2
−x1 is its width. The wave functions in Eq. �33� are linear
combinations of right- and left-moving eigenstates of the
one-valley unperturbed Hamiltonian. The relative amplitudes
of the propagating states are defined by transmission and
reflection coefficients. The scattering coefficients are ob-
tained from the transfer matrix ��x2�=T��x1� relating the
wave functions at the two boundaries of a barrier. The two
expectation values in Eq. �33� represent the difference be-
tween pressures on the right and left sides of the barrier. For
the one scatterer system the pressures on both sides of the
barrier are equal, and the net force exerted on the scatterer is
zero.

A nonzero force arises from multiple reflections of states
between two or more scatterers. A scattering process between
two barriers due to a right-moving state is illustrated in Fig.
6. The scattering potentials are labeled by their spinor polar-
ization �. The reflection and transmission coefficients result-
ing from scattering processes within the same valley are
shown in Fig. 6. For example, RKK the amplitude of a right-
moving K state backscattered into a left-moving K state.

To calculate the force between two barriers, we fix the
position of the left barrier and differentiate the Hamiltonian
with respect to their separation z. The total force is given by

F = �
0

� dk

2�
k�2 − � Ri,KK2 − � Ti,KK2� , �34�

where the sum is over coefficients due to right- and left-
incoming states. The first term in Eq. �34� is an outer pres-
sure pushing the barriers together, and the remaining terms
represent an inner pressure pushing the barriers apart. In the
two-barrier system, the outer and inner pressures are not
equal resulting in a nonzero force.

We obtain a force whose sign and magnitude depends on
the relative spinor polarization ��=�2−�1 of the two scat-
terers. The force between two barriers separated by distance
z in the strong and weak strength �=VW /vF limits is given
by1

F = −
vF�

24z2 �1 − 3���/��2, � � 1

12�2 cos����/�2, � 	 1
� . �35�

In the ��1 limit −������ beyond which the force is
periodic. When two potentials are aligned at ��=2�n, we
obtain a universal attractive force for the fermionic Casimir
effect in one dimension. When ��= �2n+1�� the relative
spinor polarization of the two scatterers is antiparallel result-
ing in a repulsive force. The oscillatory dependence on ��
persists in the weak strength limit. Note, it is convenient to
express the force in the strong limit in terms of a dilogarithm
function Li2�x�, F=vF Re�Li2�−ei���� /2�z2 in Eq. �35�
when ��1. The results in Eq. �35� are plotted in Fig. 7.

In the ��1 limit the states between the barriers are quan-
tized, and the number of states changes by one when �� is
an odd multiple of � resulting in the cusps seen in Fig. 7.
The weak limit does not exhibit this behavior, since the qua-
sibound states between the scatterers are described by a con-
tinuous spectrum.

B. Two-valley problem

In this section we generalize the method described in Sec.
IV A to the two-valley scattering problem, where scattering
of states between different valleys as well as within the same
valley is present. Therefore, the potential is described by a

V(x)

φ φ
21

R

T

R

T

V

Region I Region II Region III

x
W W

K
φ

KK

KK

z

i,KK

i,KK

FIG. 6. �Color online� A one-valley scattering illustration due to
a K-point state incoming from the left. The two barriers of width W
and height V are separated by distance z. Each barrier is character-
ized by its spinor polarization �. The scattering coefficients are
labeled in each region of free propagation.

-3π -2π -π
δφ

1

2

-1

0

3π2ππ

F/( )
πhv
24z2

F

FIG. 7. �Color online� Force between two barriers as a function
of their relative spinor polarization ��. The solid and dashed lines
represent the forces in the large and small potential strength limits
given in Eq. �35�, respectively. The magnitude of the force in the
weak potential limit, the dashed curve, is rescaled to �=1 /2 so the
two curves can be compared.
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4
4 matrix characterized by sublattice and valley degrees
of freedom. The intra- and intervalley matrix elements are
obtained using the Bloch basis states described in Sec. II C.
The freely propagating states are eigenstates of the effective
Hamiltonian given in Eq. �7�. The wave functions used to
calculate the force expectation values obtained from the
Hellmann-Feynman theorem are linear combination of right
and left-moving states from the two K and K� points. The
relative amplitudes of the propagating states are defined by
scattering coefficients. A general expression for the wave
function in a region of free propagation is given by

��x� = eikx���K�k
K + �K��k

K�� + e−ikx���K�−k
K + �K��−k

K�� ,

�36�

where �’s are four-component spinors given in Eq. �8�, and
�’s and �’s are scattering coefficients. For simplicity of no-
tation we have dropped the p and p� superscripts referring to
one of the three equivalent corner points. The three K points
are related by reciprocal-lattice vectors, and physical quanti-
ties will not depend on the particular choice of the corner
point. The dependence on p and p� enters only as a phase of
the scattering coefficients �’s and �’s.

The full Hamiltonian for the one square-barrier system is
given by

ĤT = Ĥo + V̂��x� − x1���x2 − x�� , �37�

where Ĥo is the low-energy Hamiltonian given in Eq. �7�, V̂
is a perturbation potential, such as H1 or H2 described in
Sec. III, and the step functions define a square barrier. Inte-
grating Eq. �37� across the barrier, the 4
4 transfer matrix
becomes

T = exp
− iW�P�
+

� �x��ẑ�,− �p� − P�
−

� �x��ẑ�,�p����k + V̂�� ,

�38�

where W=x2−x1 is the barrier width.
From the transfer matrix, we calculate the scattering ma-

trix. The 4
4 scattering matrix, obtained from incoming
and outgoing states illustrated in Fig. 8, is defined as

��o

�o � = � t r�

r t�
���i

�i � , �39�

where �o�i�= ��K
i�o� ,�K�

i�o��T are right-moving incoming �i� and
outgoing �o� amplitude column vectors, and �’s define left-
moving states as shown in Fig. 8. The “primes” in Eq. �39�

indicate the coefficients due to the states incoming from the
right. Each coefficient in the scattering matrix in Eq. �39� is
a 2
2 matrix defining both intravalley and intervalley scat-
tering amplitudes. For example,

t = � tKK tK�K

tKK� tK�K�
� , �40�

where the diagonal �off-diagonal� terms are the intravalley
�intervalley� transmission coefficients. For instance, tKK� is
the forward scattering amplitude of a right-moving K state
being transmitted into a right-moving K� state.

As in the one-valley problem, nonzero forces arise from
interactions between two scatterers. An scattering process il-
lustration of a left-incoming K state between two potentials

V̂1 and V̂2 separated by distance z along the tube axis is
shown in Fig. 9. As before, we fix the left barrier and calcu-
late the force exerted on the right barrier using the Hellmann-
Feynman theorem. The force is given by

F = �
0

� dk

2�
k�4 − � Ti2 − � Ri2� , �41�

where the summations represent a sum over all reflection and
transmission coefficients in between the two barriers �region
II in Fig. 9� due to right and left-incoming states, ��k

K and

��k
K� . Throughout this paper lower-case coefficients will refer

to scattering by one barrier, and upper-case ones due to scat-
tering by a two-barrier system.

The first term in Eq. �41� represents an outer pressure in
region III of Fig. 9 due to a continuous spectrum of states
pushing the barriers together. The second and third terms in
Eq. �41� result in the inner pressure pushing the barriers
apart, which is obtained from the coefficients in region II of
Fig. 9. These coefficients are given by

Ti = t1 + t1��1 − r2r1��
−1r2t1,

Ti� = t2� + r2�1 − r1�r2�−1r1�t2�,

Ri = r2�1 − r1�r2�−1t1,
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K'

i

ii

i

o o

oo
,

,

,

,

x x1 2

W

FIG. 8. �Color online� An illustration of a scattering mechanism

by a square-barrier potential described by a matrix V̂ and width W.
A 4
4 scattering matrix is obtained by relating right and left-
moving K and K� states to their corresponding outgoing states.
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FIG. 9. �Color online� A right-moving state �k
K is scattered by a

two-barrier system separated by distance z along the tube axis. Each
barrier has a width W, height V, and is labeled by an 4
4 matrix-

valued potential V̂. Generally, each potential can produce both in-
travalley and intervalley scattering as labeled by the appropriate
coefficients in each region of free propagation.
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Ri� = r1��1 − r2r1��
−1t2�. �42�

When the intervalley matrix elements are zero in one of the

scattering potentials V̂, there is no forward- and backscatter-
ing between inequivalent Fermi points for the two-barrier
system. In this case Eq. �41� reduces to the one-valley force
given in Eq. �34�.

V. RESULTS

Using the method described in Sec. IV, we explore the
dependence of the force between two scatterers on the matrix
structure, range, and strength of the defect potentials. We
distinguish interactions between local and nonlocal poten-
tials discussed in Sec. III. We show that the Casimir force
decays as 1 /z2 which is a universal result in one dimension
in the far-field limit. However, we also find that in the pres-
ence of intervalley scattering there is a spatially periodic
modulation of this force. Our results pertain to the limit z
�W where shape corrections are negligible.1 A general so-
lution of the integrals appearing in the force calculations in
derived in the Appendix, and a summary of our results is
presented in Table I.

A. Forces between local potentials

In this section we first consider interactions between local
potentials. As discussed in Sec. III B, backscattering from a
local potential is significant for potential that vary on the
scale of the lattice d /a�1. Let us specialize Eq. �18� to
describe impurities that are centered at either of the two sub-
lattice sites. We first study the strong potential limit by fixing
the area of the potential �=VW /vF. The force is indepen-
dent of the magnitude of the potential in the ��1 limit and
is relevant for the discussion of universal Casimir interac-
tions. For a sublattice centered potential in the atomically
sharp limit d /a→0 intra- and intervalley amplitudes are
equal Vi�Vi�, as shown in Fig. 5. All reflection and trans-
mission coefficients for such scatterers approach the same
value in the strong potential limit, rij= tij=1 /2∀ 
i , j�

= 
K ,K�� and are independent of the sign of the potential.
Calculating the two-barrier scattering coefficients de-

scribed in Eq. �42� and inserting into Eq. �41�, the force
between two impurities centered on equivalent sublattice
sites is given by

FAA,BB =
vF

�
�

0

�

kdk�1

−
1 − cos4�K · Ro�

1 + cos4�K · Ro� − 2 cos2�K · Ro�cos�2kz�	 ,

�43�

where Ro is a primitive translation vector in the tangent
plane separating the two impurities, and z the component of
their separation along the axial direction. The subscripts AA
and BB imply a force between impurities which are located
on equivalent sites. Applying Eq. �A13�, the solution of the
force integral in Eq. �43� is given by

FAA,BB =
vF

2�z2Li2�cos2�K · Ro�� . �44�

Unlike in the one-valley problem where the force decays
monotonically as 1 /z2, in addition the two-valley problem
results in a spatial modulation of the force, as observed in the
argument of the dilogarithm function in Eq. �44�. The force
oscillates with the period of the �3
�3 superlattice indicat-
ing coupling between the two-valley points. The force given
by Eq. �44� is plotted in Fig. 10 as a function of z /a for an
armchair tube. The points on the curve indicate the discrete
values of the force in each period. The force between two
equivalent impurities is purely repulsive, as seen in Fig. 10,
since Li2�cos2�K ·Ro���0, where cos2�K ·Ro�= 
1,1 /4�.

Next, we consider interactions between impurities resid-
ing on different sublattice sites. A force between an
A-centered ��=0� and a B-centered ��=1� scatterer is given
by

TABLE I. A summary of results described in Secs. V A and V B. The first group present results of forces
between local potentials. The remaining rows show results for forces between nonlocal potentials, where the
dependence of the force of the relative sign s of the potential strength V is stressed.

Form Range Site 1 Site 2 Force ���1� �Eq.� Force ��	1� �Eq.�

Local �Eq. �18�� d /a�0 �=0 �=0 vF

2�z2 Li2�cos2�K ·Ro�� �44� −
svF�

2

2�z2 cos2�K ·Ro� �47�
�=1 �=1

�=0 �=1 vF

2�z2 Li2�−sin2�K ·Ro+��� �46� svF�
2

2�z2 sin2�K ·Ro+�� �47�
�=1 �=0

�= 1
2 �= 1

2
vF

�z2 Re�Li2�−se2iK·Ro�� �49� −
svF�

2

�z2 cos�2K ·Ro� �50�
��=0, �=0�

d /a�1 Any Any 0 0

Nonlocal �Eq. �29�� d /a�0 V�1 V�1 −
�vF

12z2 �52� −
vF�

2

�z2 �35�
V�1 V�1

V�1 V�1 �vF

6z2 �52� vF�
2

�z2 �35�
V�1 V�1
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FAB =
vF

�
�

0

�

kdk�1

−
1 − sin4�K · Ro + ��

1 + sin4�K · Ro + �� + 2 sin2�K · Ro + ��cos�2kz�	 ,

�45�

where � is the chiral angle of a nanotube. Applying Eq.
�A13� the force in Eq. �45� becomes

FAB =
vF

2�z2Li2�− sin2�K · Ro + ��� . �46�

For unlike impurities the force is purely attractive for all
values of the chiral angle. The argument of the dilogarithm
takes three values sin2�K ·Ro+��= 
sin2��� , sin2�2� /3
+�� , sin2�4� /3+��� which also contains �3 periodicity. The
force given in Eq. �46� is plotted in Fig. 10 on a curve la-
beled FAB for an armchair tube as a function of position.

Equation �46� indicates that the system is invariant under
the rotation of the chiral angle by �, rather than by 2� /3 as
for a defect-free lattice. This occurs because the impurity is
fixed on the lattice rather than on the tube’s coordinates, and
the position of the scatterer corotates with the lattice for vari-
ous values of the chiral angle. Therefore, the threefold sym-
metry in the presence of an atomically sharp impurity is bro-
ken. The chiral angle dependence appears only in the force
between unlike impurities, since the separation between the
two defects is not a primitive lattice vector. The three
branches in one period of FAB are plotted as a function of �
in Fig. 11. The figure indicates that force oscillates between
0 and −�vF /24z2 for all values of K ·Ro. An attractive and

repulsive interaction between defects on different and same
sublattice sites, respectively, was recently shown in two-
dimensional graphene.2

Next, we study the small potential �	1 limit and com-
pare results to the ones obtained in strong ��1 limit given
by Eqs. �44� and �46�. We keep the first nonzero term in the
expansion of small � and take the zero width limit W→0.
The next order term in the small width expansion accounting
for shape corrections is O�W /r�.1 For simplicity, we study
the case of armchair nanotubes �=0 and find a general ex-
pression for a force between sublattice centered defects. The
off-diagonal matrix elements VAB and VAB� are zero for sub-
lattice centered potentials �= 
0,1�. The force between two
local potentials in the �	1 limit is given by

F = −
svF

4�z2 ���A
1 − �B

1� · ��A
2 − �B

2� + ��A�
1 + �B�

1�

· ��A�
2 + �B�

2�cos�2K · Ro�� , �47�

where s=1�−1� refers to a force between potentials of the
same �different� sign of �, and the superscripts indicate the
potential describing scatterer one and two. Unlike in the
large strength limit shown in Eqs. �43�–�46�, the sign of the
force is a function of the relative sign s of the two potentials
in the weak limit. The sign of the force also depends on the
relative sublattice centers of the two scatterers, as in the
strong potential limit. Therefore, in the �	1 limit the sign
of the force is controlled both by the sublattice position of
the two defects and the relative sign s of their potential
strength. The �3
�3 periodic oscillation persists in the
small strength limit. These results for specific sublattice po-
sitions of the two potentials and general chiral angle are
shown in Table I and are plotted as an inset in Fig. 10 for an
armchair tube. For long-range d /a�1 potentials the force
approaches zero for all values of � since the sublattice intra-
valley matrix elements �A’s and �B’s become equal, and in-
tervalley terms �A�’s and �B�’s decay to zero as shown in Fig.
5. This result confirms the absence of backscattering from an
scalar potential by massless Dirac fermions.

Although a scatterer where the two valleys are decoupled
cannot be realized for a local potential, a case of pure inter-
valley scattering is possible. For a local potential, when an
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FIG. 10. �Color online� Forces between sublattice centered im-
purities as a function of position. The force FAA,BB between equiva-
lent impurities given in Eq. �44� and FAB between defects residing
on different sites given in Eq. �46� is plotted as a function of z /a for
an armchair tube in the strong potential limit. The continuous limits
of the force functions are shown by dashed curves in order to stress
the periodicity of the spatial modulation of the forces. The points
indicate the discrete values of the force. The inset shows equivalent
results in the weak potential strength limit given in Eq. �47�.
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FIG. 11. �Color online� The three branches in one period of FAB,
a force between an A and a B sublattice centered impurities, given
in Eq. �46� as a function of chiral angle �. The force is scaled by a
factor of �vF /24z2 and is found to be attractive for all values of �.
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impurity is centered in the middle of a bond that points along
the circumference, the potential scatters states only between
inequivalent valleys as discussed in Sec. III B. This holds
because the intravalley part of the Hamiltonian H1

a is a scalar
potential for all values of d /a, since VA=VB for a bond-
centered potential, and VAB=0 when the perturbed bond
points along the circumference. The intervalley amplitudes
are equal VA� =VB� =VAB� for �=1 /2, when �=0 and �=0.

In this case, the intervalley transmission coefficients
tKK�= tK�K=0 and the intravalley reflection coefficients
rKK= rK�K�=0 vanish. The absence of back- and forward
scattering within the same valley and between different val-
leys, respectively, by potentials that preserve mirror reflec-
tion symmetry about the tube axis has been also shown by
Ando et al.15 In the ��1 limit, the nonzero coefficients have
limits rKK��rK�K�→1 and tKK�tK�K��→0. The phase of
the reflection coefficients depends of the sign of �. The force
between two potentials with only intervalley scattering con-
tribution in the large potential strength limit is given by

Fe =
2vF

�
�

0

�

kdk�1 − 2lim
�→0

�2

1 + s�1 − �2�e2i�kz−K·Ro�2	 ,

�48�

where � is the magnitude of the transmission coefficient. The
second term in the integrand representing the inner pressure
is fundamentally different from the ones seen in Eqs. �43�
and �45�. The phase that appears in Eq. �48� is associated
with large momentum backscattering. The forces shown in
Eq. �43� and �45� involve two types of momentum transfer
which appear as various terms in the equations. When both
intra- and intervalley play a role, there is finite transmission
even in the strong potential limit. When only intervalley scat-
tering is present, the strong potential limit results in an im-
penetrable wall limit since transmission coefficient ap-
proaches zero. Therefore, the inner pressure in Eq. �48�
results from resonant states between the boundaries. The
overall prefactor in Eq. �48� is twice the magnitude than in
Eqs. �43� and �45�.

Applying Eq. �A14� and evaluating the periodic part of
the force, the solution of the integral in Eq. �48� is given by

Fe =
vF

�z2 Re�Li2�− se2iK·Ro�� =
�vF

72z2 �
− 3,1� , s = 1


− 2,6� , s = − 1
�
�49�

When only intervalley scattering amplitude is present the
force oscillates between attractive and repulsive with �3 pe-
riod as observed in Eq. �49�. The magnitude of the force is
determined by the relative sign s of the two potentials. A plot
of Fe as a function of z /a for s=�1 is shown in Fig. 12. The
points in the plot indicate the discrete values in each period
of oscillation given in Eq. �49�. In the small strength limit
�	1 the force becomes

Fe = −
svF�

2

�z2 cos�2K · Ro� . �50�

The results of Eq. �50� are shown as an inset in Fig. 12.
Although the prefactors of the force are different in the two

limits, the oscillation between attractive and repulsive per-
sists in both weak and strong potential limits. Similar behav-
ior has been observed previously in one-dimensional Fermi
liquids where only large momentum backscattering is
considered.3,4 Refer to Table I for a compact summary of the
main results presented here.

B. Forces between nonlocal potentials

In this section we calculate Casimir forces between impu-
rities described by nonlocal potentials given in Eq. �29�.
When the range of a nonlocal potential is d /a�0, off-
diagonal intravalley matrix elements VAB are dominant since
all other amplitudes are parametrically smaller as noted in
Sec. III C. Therefore, a nonlocal potential can result in a
one-valley scattering problem discussed in Sec. IV A. These
potentials can describe modulations to the hopping ampli-
tudes between neighboring sites. In the absence intervalley
scattering, states are scattered only within the same K point.
Therefore, the scattering coefficients rKK�= rK�K= tKK�
= tK�K=0 are zero. Likewise, the intervalley coefficients due
to states incoming from the right vanish. Since the two Fermi
points are decoupled the perturbation matrix is described by
two independent 2
2 matrices in the sublattice �-space.

The control parameter we vary to study interactions be-
tween two nonlocal defects is the sign of the potential V. We
assume that the dimensionless quantities Im�g̃�’s defined in
Eq. �28� are equal for the two barriers. In the strong potential
��1 limit the magnitude of the nonzero scattering coeffi-
cients approach rKK�rK�K��→1 and tKK�tK�K��→0. We
calculate the interaction between two barriers with the same
and different signs of �=V Im�g̃� /vF. Applying the one-
valley force result given in Eq. �34�, the force between two
nonlocal potentials becomes
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FIG. 12. �Color online� Forces between local impurities where
only intervalley scattering is present. The force Fe given in Eq. �48�
between two potentials of equal �s=1� and unequal �s=−1� signs is
plotted as a function of z /a for an armchair tube. The continuous
limits of the force functions are shown by dashed curves. The points
indicate the discrete values of the force. The inset shows equivalent
results in the weak potential strength limit given in Eq. �50�.
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F2 =
2vF

�
�

0

�

kdk�1 − 2 lim
�→0

�2

1 + s�1 − �2�e2ikz2	 , �51�

where s is the relative sign of the two potentials. The inte-
grands in Eqs. �48� and �51� are equivalent except for the
phase exp�2iK ·Ro� appearing in Eq. �48�. This phase asso-
ciated with large momentum backscattering is absent in Eq.
�51� since there is no intervalley scattering present by poten-
tials given in Eq. �29�.

The solution to the integral in Eq. �51� is shown in the
Appendix. Applying Eq. �A14� the force is given by

F2 =
vF

�z2 Li2�− s� =
�vF

12z2 �− 1, s = 1

2, s = − 1
� . �52�

The result in Eq. �52� shows that there is an attractive force
between two scatterers with equal sign of ��s=1� and a re-
pulsive force between defects of unequal sign of ��s=−1�.
The relative sign of V is analogous to the difference between
the spinor polarizations �� of the two scatterers discussed in
Sec. IV A. Potentials of equal sign �s=1� refer to the case of
parallel scatterers ��=0. Two potentials of opposite sign �s
=−1�, on the other hand, refer to the case of antiparallel
scatterers ��=�. The results in Eq. �52� are consistent with
the force in the ��1 limit of Eq. �35�.1 Likewise, F2 in the
�	1 limit agrees with Eq. �35�. The magnitude of the force
is larger than the result in Eq. �35� by a factor of 2 since we
are including fermions from the two K�K�� branches of car-
bon nanotubes. These results are shown in Table I.

Intervalley scattering becomes important for nonlocal po-
tentials when Im�g̃�=0 for d /a�1. A few example of such
defects are a vector potential with a zero component along
the tube axis �g� =0�, a tensor potential for armchair tubes
and zero twist ��=0 and G��=G�� =0�, or a tensor potential
for zigzag tube with zero uniaxial strain ��=� /6 and G��

=G��=0�. The effect of intervalley scattering on the Ca-
simir force is discussed in Sec. V A in the context of local
potentials, and the same physics apply for the case of nonlo-
cal potentials.

VI. DISCUSSION

Defects or impurities on a carbon nanotube can backscat-
ter electrons either through intravalley or intervalley scatter-
ing processes. In general both channels are present with their
relative strengths determined by the range and symmetry of
the scattering potentials. The models we present here provide
a framework for understanding the backscattering-induced
forces on these species. The signature of intervalley scatter-
ing is a spatial modulation of the scattering-induced forces.
By contrast intravalley scattering mediates a force that can
be either attractive or repulsive, but has a strength that de-
cays monotonically as a function of increasing separation.
Interestingly, in all cases where the interaction is described
by a local potential, the scattering problem is inevitably mul-
tivalley in character, and the energy and force of the species
oscillate as a function of separation.

The long-range interaction between multiple scatterers
might lead to complex phase structures. It was suggested by

Shytov et al.2 that interaction between adatoms absorbed on
the graphene lattice can result in defect aggregation and in-
homogeneities on the lattice.

The scatterers we describe in this paper can be physically
realized by various atomic and molecular species adsorbed
on the tube wall. These range from covalently bound atoms
and molecules,16,17 to more weakly bound metallic species.18

The range of the scattering potential is determined by the
size of the absorbed species relative to the lattice constant.
The symmetry of the potential is determined by the spatial
variation of on-site energies and by the modulation in the
intersite hopping amplitudes produced by these species.

Covalently bound species provide the most natural candi-
dates for the strongly coupled local potential models de-
scribed in Sec. III B. Here, the on-site potential barrier at an
adsorbed site can be as large as 5 eV enforcing an effectively
hard wall boundary condition on the electronic wave func-
tions. In this regime the results of Sec. V A can be used to
provide a bound on the electron-induced force. For example,
the maximum attractive force between two scatterers in the
impenetrable wall limit leads to an interaction energy of Ec
=−�vF /12z. With vF�5.4 eV·Å for nanotubes this gives
an energy of 2.8 meV at a range of z=50 nm. Note that its
spatial form follows the same scaling law as the Coulomb
interaction between uncompensated charges, but it is reduced
by a factor �vF /12e2� .1. Thus, for charge neutral dipoles
p=es whose electrostatic interactions scale as Ed�−p2 /z3=
−�e2 /z�
 �s /z�2, they are dominated by the Casimir interac-
tion in the far field z�5s. Similarly, this one-dimensional
Casimir interaction completely dominates the familiar van
der Waals interactions between charge neutral species that
are mediated by the fluctuations of the exterior three dimen-
sional electromagnetic fields.

The weak-coupling limit is relevant to the interactions of
less strongly bound species, such as metal atoms or mol-
ecules bound by � stacking interactions, e.g., benzene. Here
the energy scale for the local potential is more modest, of
order 1 eV which, assuming a range of order a graphite lat-
tice constant, corresponds to a dimensionless coupling pa-
rameter ��0.5. In this weak-coupling limit El=
−vF�

2 /2�z a local potential of V�1 eV results in 0.4
meV at a distance of z=50 nm. Though weaker, this inter-
action still decays slowly as a function of distance ��1 /z�
and will also dominate the electrostatic interaction between
charge neutral dipoles in the far field.

In this weak-coupling regime, strain induced couplings,
represented by nonlocal scatterers can be comparable in size.
Assuming a linear scaling of intersite hopping amplitudes
with bond lengths following dt /d��4 eV /Å a bond-length
change of 0.2 Å and a potential range on the order of the
lattice constant, this gives a dimensionless potential strength
of ��0.37 and a weak-coupling interaction Enl=
−vF�

2 /�z, we find 0.2 meV. These are of the same order as
the forces produced by local potentials in the weak-coupling
limit.

For adsorbate-induced potentials, it is difficult to realize a
regime where the scattering is dominated by potentials with
solely a nonlocal form. Thus, one concludes that intervalley
scattering and a residual spatial oscillation of the force is a
generic property of inter adsorbate interactions mediated by

CASIMIR INTERACTIONS BETWEEN SCATTERERS IN… PHYSICAL REVIEW B 80, 155405 �2009�

155405-13



the propagating electrons. It may be possible to quench the
intervalley channel by application of a magnetic field along
the tube axis which would have the effect of introducing a
gap at either the K or K� point and isolating the effects of
intravalley scattering. We also note that strains can be engi-
neered into these structures by application of mechanical
stresses, and this might provide an avenue for realizing the
predictions of the nonlocal model.

VII. CONCLUSION

In this paper we show that interactions between scatterers
in metallic carbon nanotubes results in a one-dimensional
Casimir problem. We generalized our previous work which
includes the one-valley problem of nanotubes, to incorporate
the effects of intervalley scattering. We show that local po-
tentials in nanotubes produce a two-valley scattering prob-
lem. The decoupling of the two valleys is not possible for a
local potential since the range must be atomically sharp in
order to produce finite backscattering. Local potentials
whose spatial extent is beyond the lattice-constant result in
scalar potentials which do not backscatter massless Dirac
fermions. Nonlocal potentials, on the other hand, can result
in a decoupled valley scattering problem. Intervalley scatter-
ing amplitudes are parametrically smaller for finite range
nonlocal potentials. Therefore, we formulate a physically re-
alizable potential which reduces to the one-valley scattering
problem.

We study forces between two scatterers mediated by the
propagating electrons of metallic carbon nanotubes. For in-
teractions between both local and nonlocal potentials we find
a universal 1 /z2 power-law decay for a one-dimensional Ca-
simir force. However, for local potentials, where intervalley
scattering plays a role, we also observe a position dependent
periodic modulation of the force. The signs and magnitudes
of the forces are not universal and are controlled by the in-
ternal symmetry of the scattering potentials.
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APPENDIX: FORCE INTEGRALS

In this appendix we provide a derivation for the integrals
that appear in the calculations of Casimir forces for ��1.
Although, a cutoff function is introduced in order to control
divergences appearing in the integral, we show that the final
result is cutoff independent. The class of integrals found in
this paper have a general form

F =
1

�
�

0

�

kdk� 1 − �2

1 + �2 � 2� cos�2kz +  �	 , �A1�

where z is the impurity separation along the tube axis. The
integrand in Eq. �A1� can be represented in terms of a Pois-
son kernel

Ps��q, � =
1 − �2

1 + �2 + 2�s cos�q +  �
, �A2�

where s=�1, and q=2kz. Introducing an exponential cutoff
function, the integral in Eq. �A1� becomes

F = lim
�→0

1

4�z2�
0

�

qe−�q�1 − Ps��q, ��dq . �A3�

Since the Poisson kernel is 2� periodic in q, the integral can
be expressed as an infinite sum times an integral over a re-
gion of �0,2��. Rewriting Eq. �A3� we obtain

F = lim
�→0

1

4�z2�
0

2�

�1 − Ps��q, ��dq


��
n=0

�

�q + 2n��e−��q+2n��� . �A4�

Expressing the sum in terms of a geometric series and sepa-
rating terms constant in q, the series in Eq. �A4� to O��� is
given by

�
n=0

�

�q + 2n��e−��q+2n�� = −
d

d�
� e−�q

1 − e−2���
=

2�

�1 − e−2���2 −
2�

1 − e−2��

+
q�2� − q�

4�
+ O��� . �A5�

The first two terms on the RHS of Eq. �A5� diverge in the
limit �→0, but vanish when integrated over q since

�
0

2�

�1 − Ps��q, ��dq = 0. �A6�

To verify that the above statement is true in the case of �
→1 we express the Poisson kernel in terms of a delta func-
tion

lim
�→1

Ps��q, � = 2��
n=0

� ���q − qn� , s = 1

��q − qn�� , s = − 1
� , �A7�

where qn=��2n+1�− and qn�=2�n− . Inserting Eq. �A7�
into Eq. �A6�, we find that there is either one �-function in
the range of integration �0,2�� or two �-functions at the two
limits of integration, each contributing half the area. There-
fore, in both cases the integral over the series of �-functions
yields a factor of 2�, which is consistent with the result in
Eq. �A6�. Note, in the �→1 limit Eq. �A3� can be solved
using a generalized Abel-Plana formula which provides a
finite expression for a difference between an infinite integral
and an infinite sum.19

Combining the above results and noting that the third
term in Eq. �A5� is cutoff independent, Eq. �A4� becomes
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F =
1

16�z2�
0

2�

q�2� − q��1 − Ps��q, ��dq . �A8�

We use the following identity to solve the integral in Eq.
�A8�:

1

2�
�

0

2�

f�x�g�x�dx = �
n=−�

�

f̂�n�ĝ�− n� , �A9�

where the “hat” indicates the Fourier series of the original
function. The Fourier series of the Poisson kernel is given by

Ps��q, � = �
n=−�

� �ein�q+ ��n, s = − 1

�− 1�nein�q+ ��n, s = 1
� . �A10�

The Fourier series of the other term in Eq. �A8� is given by

q�2� − q� =
2�2

3
− 2 �

n=−�

n�0

�
einq

n2 . �A11�

Using the results from Eqs. �A9�–�A11�, Eq. �A8� becomes

F =
1

2�z2 �
n=1

� �
cos�n ��n

n2 , s = − 1

�− 1�ncos�n ��n

n2 , s = 1 � . �A12�

Equation �A12� is a general result which can be applied to all
the integrals encountered in this paper. The series above can
be represented in terms of dilogarithm functions. For ex-
ample,

Li2�− s�� = �
n=1

� �
�n

n2 , s = − 1

�− 1�n�n

n2 , s = 1 � �A13�

and,

Re�Li2�− sei �� = �
n=1

� �
cos�n �

n2 , s = − 1

�− 1�ncos�n �
n2 , s = 1 �

�A14�

where Li2�x� is a dilogarithm function.
In Sec. V A we calculate forces between two local sublat-

tice centered impurities. The solution of Eq. �43� for interac-
tion between defects residing on equivalent sites is Eq.
�A13�, where  =0, with �=cos2�K ·Ro� and s=−1. The re-
sult for the force integral in Eq. �45�, applicable to interac-
tions between impurities centered on inequivalent sites, is
Eq. �A13� with �=sin2�K ·Ro� and s=1.

The integral in Eq. �A1� can also be related to integral in
Eq. �48� for a force between two local potentials where only
intervalley scattering plays a role, and Eq. �51� for interac-
tions between nonlocal potentials. The limit of zero transmis-
sion �→0 is equivalent to �→1 in Eq. �A1�, where �
=�1−�2. Writing Eqs. �48� and �51� in a general form in
terms of � we obtain

F =
1

�
�

0

�

k�1 − 2 lim
�→1

1 − �2

1 + s�2ei�2kz+ �2	
=

1

�
�

0

�

k�1 − lim
�→1

1 − �4

1 + �4 + 2�s cos�2kz +  �	 ,

�A15�

where we have ignored the prefactors. The right-hand side of
Eq. �A15� is equivalent to Eq. �A1� in the limit �→1. There-
fore, the solution of Eq. �48� is given by Eq. �A14� for
 =−2K ·Ro. The solution to Eq. �51� is obtained by setting
 =0 in Eq. �A14�.
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